
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

The Edison-ES programming language
John E. Davis
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Davis, John E., "The Edison-ES programming language" (1991). Theses and Dissertations. Paper 11.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/11?utm_source=preserve.lehigh.edu%2Fetd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

UTHO :

D vi ~ J hn Eo

T~TlE :The i on=
c

If gr mmlng

Lan u 9

D E:J nu r 1

THE EDISON-ES PROGRAMMING LANGUAGE

by

John E. Davis

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of
Master of Science

in

Computer Science

Lehigh University

1991

ACKNOWLEDGEMENTS

The author would like to express his appreciation

to Professor Samuel Gulden for introducing him to

parsing theory and compiler design and for his

continued support throughout this project and the

author's previous work with Edison. Appreciation is

also expressed to Professor Edwin Kay for introducing

the author to his first parser.

Expressions of gratitude are also extended to

Janet Laubenstein, a colleague at Northampton Community

College who previously worked with the author on the

Edison system. Her continued interest and support

throughout the development of the one-pass compiler was

greatly appreciated.

A special note of appreciation and thanks to my

wife, Sally, my children, John, Megan, and Bryan, and

my mother. Your understanding and support has been

appreciated even though at times during the work on

this project I appeared to be a permanent fixture in

front of the computer.

iii

TABLE OF CONTENTS

ABSTRACT 1

CHAPTER 1 THE EDISON LANGUAGE 3

CHAPTER 2 THE EDISON-ES LANGUAGE 8

2.1 DIFFERENCES WITH EDISON 8

2.2 CHARACTERS, IDENTIFIERS, AND COMMENTS 15

2.3 DATA TYPES 16

2.31 ELEMENTARY TYPES 17

2.32 CONSTANTS 19

2.33 STRUCTURED TYPES 20

2.331 ARRAYS 20

2.332 RECORDS 22

2.333 SETS 23

2.34 CONSTRUCTORS 24

2.35 RETYPING IDENTIFIERS 26

2.4 STATEMENTS 27

2.41 THE ASSIGNMENT STATEMENT 28

2.42 THE CONTROL STATEMENT 29

2.43 THE WHILE LOOP 32

2.44 THE SKIP STATEMENT 36

2.45 PROCEDURE CALLS AND FUNCTION CALLS 36

2 . 5 PROCEDURES 39

2.51 PROCEDURE HEADING 40

2.52 THE PROCEDURE BODY 42

iv

2.6 INPUT OUTPUT

CHAPTER 3 THE EDISON-ES COMPILER

3.1 DESCRIPTION

3.2 CONSTRUCTION

3.21 THE PARSER

3.22 THE SYMBOL TABLE

3.23 CODE GENERATION

3.24 ERROR HANDLING

3.25 LIMITATIONS

3.3 USING THE COMPILER

3.4 ADDITIONAL WORK

BIBLIOGRAPHY

APPENDIX

A.1 THE EDISON-ES GRAMMAR

A.11 TERMINAL SYMBOLS

A.12 NONTERMINAL SYMBOLS

A.13 PRODUCTIONS

A.14 THE'NULL NONTERMINALS

A.15 THE FIRST SETS

A.16 THE FOLLOW SETS

VITA

v

43

46

46

49

49

53

58

65

66

67

69

70

71

71

71

71

71

74

74

77

80

The Edison-ES Programming Language

John E. Davis

ABS~T

This paper describes the Edison-ES programming

language, and the construction of a one pass compiler

for the language.

Edison-ES is an extension of a subset of the

Edison programming language described by Per Brinch

Hansen. Similar in appearance to Pascal, Edison was

originally designed for writing the Edison Operating

System for use on personal computers. Except for

modules, procedure parameters and library procedures,

Edison-ES contains all of the Edison constructs for

writing sequential programs. None of the Edison

constructs for writing concurrent programs have been

included in Edison-ES. Character and numerical input

and output have been added as extensions to this subset

of Edison.

The one-pass compiler for Edison-ES is for use on

a MS DOS microcomputer and is written in TURBO PASCAL.

The compiler, which consists of three TURBO PASCAL

UNITS and the main program, emits assembly code for the

INTEL 8086 microprocessor which can be assembled and

1

linked using any 8086/88 assembler and MS DOS linker to

obtain an executable file.

2

CHAPTER 1 THE EDISON LANGUAGE

Edison is designed as a programming language which

is simple to use and understand, while supporting

modular construction of sequential as well as

concurrent programs for use on a personal computer. 1

The subset of Edison which is to be described is one

which supports the creation of sequential programs.

Since the programs are to be executed under MS DOS

rather than the Edison system, constructs are omitted

from the grammar which do not appear to be needed in

the MS DOS environment. The extension of the subset to

include basic input and output functions appear to be

necessary if any use is to be made of the language and

the compiler described later. This extended subset of

Edison is referred to throughout this paper as Edison-

ES.

Edison is a LL1 block structured programming

language similar in appearance and semantics to Pascal.

The design of Edison has taken the necessary, basic

structures from Pascal and used them as a basis for

Edison. Edison contains some constructs similar to

those of Pascal, but omits others which are thought to

be either redundant or unnecessary. Since simplicity

1. Per Brinch Hansen, Programming a Personal Computer.
Englewood Cliffs NJ: Prentice Hall, Inc, 1982,
pg. 8.

3

is a main goal in the design of Edison, structures

whose function could be accomplished using previously

defined structures are not included in Edison.

The similarities with Pascal are numerous.

Programs are constructed of procedures, which

communicate with other procedures through the use of

both variable and value parameters. Some procedures

may be assigned a value themselves in which case Pascal

and Edison refer to the procedure as functions. Edison

functions do not require the reserved word, function,

but are declared like any other procedure except that

it must have a data type. Like Pascal, Edison requires

that all identifiers be assigned a data type. Edison

supports the same data types as Pascal except for the

pointer, variant record, and real types. Only one

basic repetitive structure, the WHILE loop, is included

in the language. The REPEAT and FOR loops are not

included since they can be written as WHILE loops and

therefore are not needed. CASE statements from Pascal

are not included, since they can be replaced by the IF­

ELSE in Edison.

Even with all of these similarities with Pascal,

there are obvious differences. First, Edison can be

used to write either sequential or concurrent programs.

The sequential programs do indeed look similar to

4

Pascal programs. The concurrent programs, which cannot

be written in Pascal, are made possible through the

use of WHEN, COBEGIN, ALSO, PROCESS constructs. Since

Edison is to be used for writing an operating system,

library procedures are supported through the use of a

LIB PROC construct. Input and output are not included

since they are considered to be system dependent and

therefore not able to be programmed in the high level

language itself. Modules are also available in Edison.

The module permits importing data from a surrounding

block and exporting data to an enclosing block. The

data received by a module or exported from a module is

manipulated by operations entirely within the module.

Since Edison programs are procedures called by other

Edison programs, including the operating system,

programs can have procedure parameters passed to them.

In order to maintain consistency, any procedure is

permitted to have procedure parameters in Edison.

These procedure parameters, unlike those in Pascal,

also include parameter lists. Edison uses an int

function to replace the ORO function of Pascal. Thus

int('A') in Edison yields the ASCII value of 'A' or 65.

Edison uses the char function to replace Pascal's CRR

function. Thus in Edison, char(int(65» = 'A'. Unlike

Pascal, Edison also provides for an inverse mapping for

5

boolean values through the use of the bool function.

Thus if done is an identifier of type bool,

bool(int(done» = done.

Some semantic differences also exist between

Pascal and Edison. Pascal and Edison both use the

semicolon as an end of statement delimiter. Its use

indicates another statement in the list follows the

current statement. Pascal, however, permits the use of

the blank or empty statement while Edison does not.

Therefore in Edison a semicolon is not permitted prior

to an END sYmbol, while Pascal does permit a semicolon

prior to the END sYmbol. The use of the END sYmbol

does not depend on a corresponding BEGIN sYmbol. In

Edison, all IF and IF-ELSE constructs require an END

sYmbol. This eliminates the classic "dangling else"

problem found in Pascal with Pascal's IF-THEN-ELSE

construct. All WHILE loops likewise require an END

sYmbol. The only time a BEGIN-END construct is used is

to indicate the beginning and end of the statement part

of a procedure. Pascal's compound statement has been

replaced with a statement list construct, which as

mentioned earlier, concludes with a statement that is

not followed by a semicolon.

6

CHAPTER 2 THE EDISON-ES LANGUAGE

2.1 DIFFERENCES WITH EDISON

Edison-ES as mentioned previously was designed as

a subset of Edison, extended by including support for

input and output. Concurrent programs were not of

primary concern when defining Edison-ES, and were

therefore not included in the definition of the

language. Thus, the COBEGIN, ALSO, WHEN, and PROCESS

constructs are not included in Edison-ES.

The target machine and environment played a large

role in the design of the language. Because of these

two factors, procedure parameters were not included in

Edison-ES. Programs written in Edison-ES were expected

to be run on INTEL 8086/88 based hardware in an MS DOS

environment rather than the Edison system environment.

In the Edison environment, programs, which are complete

procedures, were called with parameters from the

operating system. Procedure parameters were included

in Edison because of the need to call programs with

procedure parameters. In order to maintain generality,

Hansen permitted all procedures to have parameter

procedures. Since the main reason for supporting

procedure parameters was no longer valid, this

construct was not included in Edison-ES.

7

The elimination of the procedure parameter

actually simplified the writing of Edison programs.

The recommended method for writing Edison programs was

to write programs with a standard program prefix. The

program prefix was merely a procedure heading

containing as parameters, all the operating system

declarations and procedures that would be needed by any

Edison program. When writing an Edison program the

prefix with all its declarations and procedures would

be the first procedure heading. All input, output,

loading of library procedures, and disk drive

operations were then passed to the program as procedure

parameters when the program was called by the operating

system. Because of the elimination of these procedure

parameters, no program prefix is required. Instead,

the main procedure has no parameters at all.

One of the parameters that was passed to an Edison

program when called by the operating system was a load

procedure. This procedure would be also used as a

parameter for any call to a library procedure. Library

procedures were loaded into memory as needed during

execution of a program. The procedure was in memory

only while being executed. When execution of the

library procedure terminated, the memory it occupied

was free to be used by another library procedure.

8

Library procedures were precompiled procedures that

were loaded in memory above the program. This

necessitated maintaining the top of code address at all

times. Library procedures were not considered to be a

necessity and were therefore not included in Edison-ES.

Edison includes an interesting structure called a

module. A module is a collection of data entities and

procedures that are either used within the module or

exported to the immediately enclosing block. The

exported procedures, variables, types, and constants

may be called or referenced by the block immediately

enclosing the module. Procedures which are exported

are defined within the module and may use procedures

and variables which are also defined within the module

but not exported. This insures the integrity of the

procedures in the module by permitting only locally

defined entities to be operated on by these procedures.

Consider the classic STACK data structure,

consisting of a stack top, a sequential collection of

data items, and the operations to create the stack,

test for an empty stack or a full stack, and push and

pop items onto and from the stack. A module could be

declared to export a variable S of type stack which

could be an exported record type. The procedures for

pushing and popping would likewise be exported. The

9

procedure for creating a stack need not be exported

since this would be used to initialize the exported

variable S. The functions for testing for an empty

stack or full stack would not be exported, since they

are needed by the pop and push procedures only. Thus

S, a record type stack, and two procedures for

operating on the stack would be available to the

enclosing block. The enclosing block would not need to

know how the procedures were defined or the actual

definition of S, but just that the procedures and

variable S of type stack were available. Exported

entities are prefaced by an asterisk. The procedure,

halt, is a standard Edison procedure for terminating

the program and may be called anywhere in the program.

The following is an example of such a module.

MODULE "stacks"

CONST

max = 500

ARRAY list[l:max] (int)

* RECORD stack (1: list; top: int)

* VAR

S: stack

PROC fullstack(VAR S: stack): BOOL

BEGIN

IF S.top = max DO

10

VAL fullstack:= TRUE

ELSE TRUE DO

VAL fullstack:= FALSE

END

END "fullstack"

PROC is_mtstack(VAR S: stack): BOOL

BEGIN

IF S.top = 0 DO

VAL is mtstack:= TRUE

ELSE TRUE DO

VAL is mtstack:= FALSE

END

END "is mtstack"

* PROC push(VAR S: stack; y: INT)

BEGIN

IF NOT fullstack(S) DO

S.top:= S.top + 1;

S.l[S.top]:= y

ELSE TRUE DO

HALT

END

END "push"

* PROC POp(VAR S: stack; VAR y: INT)

BEGIN

IF NOT is_mtstack(S) DO

11

y: = S.l [S . top] ;

S.top:= S.top - 1

ELSE TRUE DO

HALT

END

END "pop"

PROC createstk(VAR S: stack)

BEGIN

S.top:= 0

END "createstk"

BEGIN "module stacks"

createstk(S)

END

Each module is initialized by executing its

statement part before creating the entities defined

within the module. The notion of the module is most

interesting, but not truly necessary. Thus they are

not included in Edison-ES.

Console input and output of characters and

integers was considered to be a necessity. With the

unavailability of the input and output procedures of

the Edison system, input and output procedures had to

be added to the language or passed as parameters to the

program. Passing them as parameters would once again

require the use of a standardized procedure heading for

12

the main procedure, so extending the language to

include these constructs seemed appropriate. These

procedures are included as standard procedures with the

names as reserved words. The procedures are coded

using MS DOS interrupts and function calls.

Except for the constructs noted, and the inclusion

of a condition that all constant, type, and variable

declarations be made before local procedures are

declared, Edison-ES is identical to the Edison grammar

described by Hansen. Using standard algorithms for

finding the null nonterminals, the follow sets,2 and

the first sets 3 for each of the nonterminals in the

grammar, the resulting grammar can be verified to be

LL1. A listing of the grammar sYmbols, the first sets,

the follow sets, and the set of all null nonterminals

is included in Appendix AI.

2.2 CHARACTERS, IDENTIFIERS, AND COMMENTS

Identifiers in Edison-ES are similar to those in

Pascal. One change is the inclusion of the underscore

character anywhere in the identifier name after the

2. C.N. Fischer and R.J. LeBlanc, Crafting A Compiler.
Menlo Park, CA: Benjamin Cummings Pub. Co.
Inc., 1988, PP4 103-105.

3. W. Barrett, R. Bates~ D. Gustafson, J.Couch,
Compiler Construction. 2nd Ed. Chicago: SRA,
Inc., 1979, pp. 154-156.

13

first character. Identifiers must have a letter as the

first character followed by any sequence of characters

containing letters, underscore characters, or digit

characters. The Edison-ES compiler will accept

identifiers up to eighty characters long, but

recognizes only the first ten characters. Identifiers

longer than ten characters should be unique within the

first ten characters. The compiler is not case

sensitive, 50 that upper and lower case characters may

be mixed throughout a program.

Identifiers may be used to represent constant data

or variable data. All identifiers are of a specific

type which is either a standard type or a user defined

type.

A constant identifier may represent any numerical

value, character sYmbol, truth sYmbol, enumeration

sYmbol, or another constant identifier. Character

constants and control characters are to be enclosed in

single quotes when used within a program. The truth

sYmbol constants are TRUE and FALSE.

Comments are to be enclosed in double quotes. Any

text enclosed within double quotes is ignored by the

compiler.

14

2.3 DATA TYPES

Data entities are grouped into classes depending

on the set of values the entity may assume. These

classes are the type to which the entity belongs.

Types are considered to be elementary types and

structured types. The elementary types are the

standard types or enumeration types. The structured

types permit definition of user defined types

consisting of one or more elementary or other

structured type.

For known types, standard types or types which

have been declared, a variable is assigned a type

either in a parameter list or in a variable

declaration. A variable declaration begins with the

word, var. The syntax for a variable declaration would

be written

var

v1: typei;

v2, v3: typej;

v4: typek

The types may be the same or they may be different.

Note that a semicolon is used to separate the variable

declarations in the variable declaration list. The

15

last variable declaration in the list is not followed

by a semicolon.

2 • 31 ELEMENTARY TYPES

The elementary types in Edison-ES are type bool,

for boolean entities; type int, for non-fractional

numeric entities; type char, for entities with

character values; and type enum, for entities

consisting of enumerated sYmbols. There is no type for

fractional numeric entities. Hence all numeric data

must be integer.

Identifiers of type bool have values that are

either true or false. When printing, the Edison-ES

compiler emits a value of 5 for true and a value of 4

for false. This is due to the assignment of constant

names in the compiler. Identifiers of type bool may be

operands for the boolean operators: and, or, and not

where the usual logical rules apply.

An identifier of type int has values that are in

the set of integers and which are between -32,768 and

32,767, the -maxint and maxint values for TURBO PASCAL

on the MS DOS microcomputers. Identifiers of type int

may be operands for the integer operations of +, -, *,

div, and mod, which correspond respectively to

addition, subtraction, multiplication, integer

16

division, and modulo. These identifiers may be

compared using the usual numerical relational

operators, =, <>, <, <=, >, >= which are used for

equal, not equal, less than, less than or equal,

greater than, and greater than or equal respectively.

A comparison results in a value of type bool.

The identifiers of type char may be used to

represent characters from the system's character set.

Characters may include a printable character such as a

letter or digit, or a control character. Printable

characters are designated by enclosing the character in

single quotes, 'A', for example. Control characters

are designated by enclosing the character's ordinal

value in parenthesis and prefacing the enclosed number

with the sYmbol, char. Identifiers of type char may be

compared using the usual numerical relational

operators, =, <>, <, <=, >, >=, since the ordering of

the characters is dependent on the numerical code used

to represent the character set.

An enumeration type assigns a list of identifiers

to a type name. Each identifier in the list is mapped

to the ordinal position of the identifier in the list.

The declaration of an enumeration type is made as a

type declaration where the reserved word, enum would be

followed by the type name being defined. This is

17

followed by the enumerated list of names enclosed in

parenthesis. For example, to declare an enumeration

type named colors, the construct

enum colors (red, blue, green, yellow)

would be used. In this example, int(red) = 0,

int(blue) = 1, int(green) = 2, and int(yellow) = 3.

Values of an enumeration type may be compared using the

usual numerical relational operators, =, <>, <, <=, >,

>= since the ordering is based on the ordinal position

of the value in the enumeration list.

2.32 CONSTANTS

Constants are declared using a construct that starts

with the sYmbol, canst. Following this sYmbol is a

list of statements assigning values to constant

identifiers. Each of the statements in the list is of

the form canst id = value, where const_id is the

constant identifier being defined and value is the

value assigned to the const id. Each of the statements

in the list is separated from the previous statement by

a semicolon. The end of the list is determined by the

absence of a semicolon after the last statement.

18

2.33 STRUCTURED TYPES

A structured type is a data type that can be

constructed of components of other known types. The

structured types in Edison are the array, the record,

and the set.

2.331 ARRAYS

An entity of type array is a finite collection of

data, all of the same type, where each data item is

accessed by its position in the collection. A position

within the collection is denoted by an index. An index

is a value in a set of successive values bounded below

and above by constant sYmbols. This set of bounded

values is called a range. For example, if L is an

array with indices in the range 5 through 25, the range

for L would be denoted as 5:25. Accessing item 6 in

the collection L would be accomplished through

reference to L[6]. Since the indices for L start at 5,

item 6 would actually be the second item in the

collection. These definitions are compatible with

those of an array and range found in Pascal and other

high level languages. Edison has no subrange types.

To declare an array type called list with a range 1

19

through 25 where the items in list are integers, the

construct

array list [1:25] (int)

would be used. The type name being defined is list and

int is referred to as the base type. The range is

enclosed in brackets with the lower bound, which is

listed first, separated from the upper bound by a

colon. The base type is always enclosed in

parenthesis. Identifiers of type array may be

compared, provided they are of the same type, using the

relational operators of = and <> for equal and not

equal respectively. Two arrays of the same type are

equal if the corresponding elements in each array at

each position in the range of the array are equal.

2.332 RECORDS

The record type permits the construction of a

finite collection of data of different known types

where each data item in the collection is known by an

identifier called a field name. A record's field is

accessed by using the record name followed by a period

which is followed by the name of the field to be

accessed. For example, if a variable, FlGUR, of type

record had fields: fig, length, width, and height, the

height field of the record would be accessed using the

20

notation FlGUR.HEIGBT. This again is similar to

Pascal. The record type described above would be

declared using

enum figkind (cube, rectangular, cylinder)

record figur(fig: figkind; length, width, height: int).

Two records of the same type may be compared using the

equal and not equal relational operators. Two records

of the same type are equal if all of the fields in one

record are equal to each of the corresponding fields in

the other record.

2.333 SETS

The final structured type is the set which is a

finite collection of values of the same known

elementary type, known as the set's base type.

Elements of a set must have ordinal values in the range

o through SETLIMIT, a system dependent constant. In

Edison-ES the SETLIMIT is defined to be 127. To

declare CHARSET, as a set of characters, the construct

set CHARSET (char)

would be used. The set may be empty or it may contain

any number of elements with values in the range 0

through SETLIMIT. The usual set operations of union,

intersection, and difference are defined for use with

set operands in Edison. These are indicated by the

21

symbols +, *, and - respectively. Set inclusion is

determined by the IN relational operator. An element x

is in a set S means that x is a value in the base type

of set S, and the ordinal value of x is between 0 and

SETLIMIT inclusive.

Each identifier of one of the structured types is

declared prior to the beginning of the statement part

of the procedure in which it is declared. The order of

declaration of variables, constants, and structured

types is not dictated by the grammar. The declarations

of these entities may be in any order, and may in

Edison be mixed with the procedure and module

declarations. In Edison-ES there is also no

specification on the order of the declarations for

constants, variables, and types. However, in Edison-ES

these declarations must be completed before declaring

procedures and modules within a procedure.

2.34 CONSTRUCTORS

Edison and Edison-ES have a structure referred to

as a constructor. A constructor is used with both

elementary types and all structured data types. In an

elementary type, a constructor indicates a mapping

between the values listed in the constructor and the

name in that ordinal position in the elementary type.

22

Thus for the elementary types bool, int, and char, the

mappings y:= bool(x), y:= int(x), and y:= char(x) are

constructors which assign to y the value whose ordinal

value is x in the set of bool values, int values, and

char values respectively. In a structured type, the

constructor indicates a mapping of the values listed

into the component of that structured type that is at

the same ordinal position in the structured type. Thus

a constructor is used to assign values to a variable

whose type is the same as that of the constructor.

Consider the following declarations.

enum figkind (cube, rectangular, cylinder)

record figur(fig: figkind; length, width, height: int)

array list[1:5] (char)

set numset (int)

If y:= figkind(2), then y must be an identifier of type

figkind and it has just been assigned the value

cylinder. If z:= figur(rectangle, 3, 5, 6), z is a

record of type figur and the fig field has been

assigned rectangle and length, width, and height have

been assigned 3, 5, 6 respectively. If L is an

identifier of type list, the assignment

L: = list (, a " , b', , c', , d', , e')

23

is equivalent to the 5 assignments L[l]:= 'a', L[2]:=

'b', ... , L[5]:= 'e'. One expression must be included

for each position in the array. The assignment,

s:= numset(l, 2, 5, 50)

creates a set S containing the integers 1, 2, 5, and 50

as elements.

2.35 RETYPING IDENTIFIERS

Identifiers may be retyped when passed as

parameters to another procedure or when used in an

expression. The retyping is accomplished by specifying

the new type for the identifier when the identifier is

referenced either in an expression or as a parameter in

an actual parameter list. This could be considered as

a construct that has semantics somewhat similar to that

of a record variant. Consider

enum grade(A, B, C, D, F)

and

var

final_grade: grade;

cred_hrs, qual-pts: into

Here final_grade is of type grade and the variables

ered_hrs and qual-pts are of type into Rather than

convert final_grade to an integer value, the statement

qual-pts:= cred hrs * (4 - final_grade: int)

24

would result in an accepted construct in Edison. Final

grade would be considered to be of type int in this

expression, with an integer value which is

int(final_grade). Thus the value of a retyped

identifier is value of a data item of the new type that

has the same internal numerical representation. This

would lead to a value of 0 for final_grade if

final_grade had the grade value of A. Similarly, if ch

is an identifier of type char and ch:= '9' then

ch:int - int('O') = 57 48

9

assuming the ASCII character set.

The only prerequisites for retyping a variable are

that the original type and the new type have the same

length and the new type be a known type. Length in

this context, refers to the amount of internal storage

required to represent a variable of the type being

considered. Thus any elementary type may be retyped as

any other elementary type, since all elementary types

have the same length. It is also possible for a record

to be retyped as an array if the total length of all of

the fields was the same as the length of the array.

25

../

2 .4 STATEMENTS

As mentioned previously, Pascal's compound

statement has been replaced with the notion of a

statement list. A statement list is a sequence of

statements. Each statement in the sequence except the

last is terminated by a semicolon. Hence the semicolon

serves as a continuation symbol as in Pascal. This

construct coupled with the requirement that WHILE and

IF statements require an END symbol, eliminate the need

for the BEGIN-END statement pair found in Pascal. The

WHILE statement is the only repetitive construct in

Edison. The control statement is the IF-ELSE where the

ELSE is optional. Assignment to variables is through

the use of an assignment statement. The SKIP statement

and procedure call complete the list of supported

statement constructs.

2.41 THE ASSIGNMENT STATEMENT

The syntax and semantics of the assignment

statement is identical to that of the Pascal assignment

statement. A variable of known type is followed by the

assignment symbol, :=, which is followed by an

expression. The expression is evaluated and the value

assigned to the variable. Hence the syntax is

26

VARIABLE := EXPRESSION

where the expression's value and the variable must be

of the same type. Assignment of a value to a component

of a structured type, assigns a value to only that

component while leaving the other components unchanged.

Some examples of assignment statements are

SUM:= SUM + NOM

L[i]:= L[i+l] 1

X.LENGTH:= 5

A constructor may also be used to assign values to a

variable. (Section 2.34). If the declaration for a

set, set numset (int) were made and S is of type

numset, then S:= numset(50) would create a set S with

the integer 50 as an element. The statement

S:= S + numset(25)

would assign to set S the set which is the union of

set S and the set containing the integer 25.

2 .42 THE CONTROL STATEMENT

The control statement in Edison is the IF-ELSE

statement, where the ELSE clause is optional. The

statement must end with an END. The syntax is

IF condition DO

statement list

END

27

If the ELSE clause is used the syntax is,

IF condition! DO

statement list!

ELSE condition2 DO

statement list2

ELSE condition3 DO

statement list3

ELSE conditionn DO

statement listn

END

Thus any number of ELSE clauses may be used.

Conditioni is an expression that has a value of type

bool. When executing a control statement, conditioni

is evaluated, and if true, statement listi following

the symbol DO is executed. If conditioni evaluated to

false, control moves to the next ELSE clause or to the

END if no ELSE clause exists. If the conditioni+! in

this ELSE clause evaluates to true, statement listi+!

is executed, otherwise control moves to the next ELSE

clause or the END. If no conditions evaluate to true,

no statement lists are executed. When a statement list

28

has been executed, control moves to the END. Thus, at

most one statement list is executed, the first

statement list for which the preceding condition

evaluated to true. Thus the clause, ELSE TRUE DO

statement listn END , would have statement listn

executed if no other conditioni, 1 ~ i < n, evaluated

to true. Consider two examples.

IF (x > 10) OR (x < 0) DO

p:= p*x;

x:= x-I

ELSE true DO

writenum(p)

END

In this example, if x > 10 or x < 0 then the statements

p:= p*x and x:= x-I are executed in order after which

control moves to the statement that follows the END.

For any value of x, 0 ~ x ~ 10 , the value of p is

printed to the output screen.

For the second example, consider the following

Pascal CASE statement where A, B, C are procedure

calls.

29

3 DO

CASE x OF

1: A;

2: B;

3: C

E~

If x ~ 4 or x ~ 0, either of two situations could arise

at runtime, depending on the implementation of Pascal

that is in use. In one case no procedures are called

and control moves to the statement following the end.

In the other instance, the program terminates with a

runtime error. The could be written in Edison so that

no runtime error would occur if the value for x were

out of range. Since no CASE exists in Edison it would

be written using the IF-ELSE in the following way.

IF x = 1 DO

A

ELSE x = 2 DO

B

ELSE x

C

E~

If x < 1 or x > 3, then none of the procedure calls are

made and control is moved to the statement following

END. If 1 ~ x ~ 3, then exactly one of the procedures

A, B, or C is called, depending on the value x.

30

2 .43 THE WHILE LOOP

The WHILE loop is the only repetitive structure in

Edison because the other repetitive structures, FOR and

REPEAT loops, can be written as WHILE loops. Edison's

WHILE loop has interesting sYntax and semantics, both

of which are similar to those of Edison's IF-ELSE

construct.

The sYntax of the WHILE loop is

WHILE conditionl DO

statement listl

ELSE condition2 DO

statement 1ist2

ELSE conditionn DO

statement listn

END

where the ELSE clause is optional.

In executing the WHILE loop, Edison continues to

iterate the loop until all conditions have been

evaluated as false. If any conditionj, 1 ~ j ~,

evaluates to true, statement listj, following

conditionj is executed. Control then returns back to

31

the beginning of the loop to begin testing the

conditions again. Hence, if no conditions evaluate to

true on the initial execution of the loop, no statement

lists are executed.

Assume conditionj, 1 ~ j ~, is the first

condition following the WHILE to evaluate to true on an

iteration of the loop. Statement listj will be the

only statement list executed on that iteration of the

loop. Care must be taken to insure that one of the

conditions will eventually evaluate to false, otherwise

the loop cycles forever. Thus an infinite loop would

occur if the construct

readnum (x) ;

WHILE x > 0 DO

A;

readnum(x)

ELSE x = 0 DO

B;

readnum(x)

ELSE x < 0 DO

C;

readnum(x)

END

were used. No way exists to terminate this loop

through testing the value for x, so that a condition

32

which is not totally dependent on the value of x must

be used to eliminate the infinite loop. One

possibility would be the through the use of a variable,

done: bool.

readnum (x) ;

done:= false;

WHILE NOT done DO

IF x > 0 DO

A-,

done:= false;

readnum(x)

ELSE x = 0 DO

B-,

done:= true;

readnum(x)

ELSE x < 0 DO

c;

done:= true;

readnum(x)

END "IF"

END "WHILE"

If the ELSE clause is omitted, the WHILE loop is

semantically equivalent to a WHILE loop in Pascal.

33

2 .44 THE SKIP STATEMENT

The SKIP statement is used for a statement that

does nothing. Executing the SKIP has no effect on the

program. It is used to indicate an empty statement.

2.45 PROCEDURE CALLS AND FUNCTION CALLS

Procedure calls in Edison-ES are similar to those

of Pascal, a procedure name followed by an optional

actual parameter list enclosed in parenthesis. The

procedure name must be known to the program through a

previous declaration. The optional parameter list

contains parameters which are mapped one-to-one to the

parameters in the parameter list of the procedure

heading. In the mapping, each parameter in the actual

parameter list is mapped with the formal parameter in

the same ordinal position in the formal parameter list.

Parameters mapped to each other must be of the same

type, or they may be retyped in the actual parameter

list so as to match the type of the corresponding

formal parameter.

Consider the construct

findnum(num, ch: int)

where ch was declared as type char and the procedure

heading for findnum is

34

proc findnum(var x: int; y: int).

The actual parameter num is mapped to the formal

parameter x and the actual parameter ch is mapped to

the formal parameter y. Since ch was declared as type

char, a type conflict was avoided through the use of

retyping ch to type int when the call was made. The

parameter y receives the int(ch) as its value, while x

references the value of the variable num.

The formal parameters in the procedure heading are

either variable parameters, preceded by the sYmbol,

var, or they are value parameters. Variable parameters

reference the actual parameter mapped to it, so that

altering the value of a variable parameter, alters the

corresponding actual parameter in exactly the same

manner. A value parameter is a completely new

variable, with an initial value given by the current

value of the corresponding actual parameter.

When executing a procedure call, the compiler

(a) pushes the base pointer of the current

procedure environment,

(b) pushes the base pointer of the enclosing

procedure environment,

(c) pushes the return address which will be the

address of the instruction following the procedure call

35

(d) creates space for each parameter in the order

listed in the call

(e) initializes each parameter. If an actual

parameter maps to a variable parameter, the formal

parameter is initialized with the address of the actual

parameter. In the case of the actual parameter mapping

to a value parameter, the formal parameter is

initialized with the value of the actual parameter.

(f) Control is then transferred to the procedure.

A function is a procedure which is used as an

operand in an expression. The function name is

assigned a known type when it is declared. Within the

function, a value is assigned to the function name

using an assignment statement, where the function name

is preceded by the sYmbol, val. For example, consider

a call to a function which computes the value of the

factorial of an integer n,

x:= fact(n)

Assuming the value of the factorial is to be computed

using the function fact, upon completion of the call to

fact, the value of the factorial of n is assigned to an

integer variable, x. The only difference in the way

the compiler interprets the call to a function from a

call to any other procedure is that space for the value

to be returned by the function name is placed on the

36

stack before saving the base pointer of the calling

block. Within the function, a recursive call can be

made to the function fact, using the construct

val fact:= n * fact(n-1).

The use of the symbol val preceding the assignment to

the procedure name, fact, is required for Edison to

interpret the assignment to fact as an assignment to

the function name.

2.5 PROCEDURES

Procedures in Edison-ES are quite similar to those

in Pascal. Procedures are available as complete

procedures or as split procedures. A split procedure

is similar to a forward procedure in Pascal. It

consists of a procedure heading preceded by the symbol,

pre. The declaration of the complete procedure

definition for this split procedure follows later and

is preceded by the symbol, post. A complete procedure

is declared using a procedure heading followed by the

body of the procedure. The body of the procedure

consists of declarations followed by the statement

part.

2.51 PROCEDURE HEADING

A procedure heading begins with the symbol, proc,

followed by an identifier which is the name of the

37

procedure. This is followed by an optional formal

parameter list enclosed by parenthesis. If the

procedure is a function, this optional parameter list

would be followed by a colon and the type of the value

to be returned by the function. As previously

mentioned, (Section 2.45), the parameter list contains

variable parameters, which are preceded by the var

sYmbol, and value parameters which are not preceded by

a var sYmbol. The type for each identifier is

specified after listing parameters of the same type.

These parameters of the same type are separated by

commas and the list ends with a colon followed by the

type. If more than one list is used within the

parameter list, the lists are separated by semicolons.

For example,

proc findsum(var sum: int; num: int)

would be a procedure heading with two parameters for a

procedure that is not a function.

proc fact(n: int): int

would be a function procedure heading with one

parameter.

Pascal and Edison-ES treat the procedure heading

differently for split procedures. In Edison-ES, the

split procedure has a heading that starts with a pre

sYmbol similar to

38

pre proc A(x: char; y: int)

The definition of proc A, which follows later, must be

a complete procedure preceded by the post symbol. Thus

the definition of A as a complete procedure has the

heading

post proc A(x: char; y: int)

The differences between the Edison-ES procedure heading

and that of Pascal are obviously the repeating of the

parameter list in Edison-ES in addition to the use of

the symbol, post.

Finally, the block level changes in the procedure

heading. The block level increases by one at the end

of the procedure name. This new block level remains as

the current block level until the END symbol is found

at the end of the procedure's statement part.

2.52 THE PROCEDURE BODY

The procedure body consists of declarations and

the statement part. The declarations are those of

entities which are known only to the procedure. Thus

the scope of an entity is the block in which it is

declared and all blocks declared within that block.

These locally defined entities may be constants, types,

variables, and other procedures. Edison-ES requires

that all constants, types, and variables be declared

39

within the procedure before the local procedures are

declared. The grammar for Edison however, does not

require this. In both Edison and Edison-ES the order

of the listing of declarations of constants, types, and

variables is not fixed by the grammar. Thus constants

may be declared after some of the variables, but before

other variable declarations.

Constants are declared following the reserved word

canst. A constant declaration is of the form

canst id = value

as mentioned previously (Section 2.32). Types are

declared by listing the structured type to be defined

followed by the definition as mentioned previously

(Section 2.31). Variable declarations as previously

explained (Section 2.3) begin with the symbol var.

Procedure declarations follow the declarations of

the constants, types and variables in Edison-ES. The

procedures are either split procedures or complete

procedures. The declarations terminate and the

statement part begins with the begin symbol and ends

with the end symbol.

The statement part is a statement list containing

statements separated by semicolons. The statement

before the end, which is the last in the list is not

followed by a semicolon.

40

Execution of the procedure starts at the begin

symbol, and continues to the end symbol. Procedures

and data entities declared within the procedure are

local to the procedure and may be referenced from any

statement within the procedure.

2 • 6 INPUT OUTPUT

Edison-ES has two system dependent input

procedures and two system dependent output procedures.

These are defined and added as standard procedures in

order to provide some practicality to the language

since the Edison system calls for input and output are

no longer available as explained in Section 2.1. The

two input procedures are readch and readnum. Each has

one variable parameter.

The standard procedure, readch, is called through

a procedure call of the form, readch(ch_sym), where

ch_sym is any variable of type char. Execution of this

procedure requires that the actual parameter be a

variable since the character read from the keyboard is

returned in the actual parameter. To read an end of

line which has a return and a line feed, two calls must

be made, one for each character.

To read an integer from the keyboard, the

procedure readnum, is called using a procedure call of

41

the form readnum(int_sym), where int_sym is any

variable of type into Upon execution of the procedure,

an integer entered from the keyboard is read and

returned in the actual parameter. The entry is

terminated with a space or a return.

Character and integer output are available through

the use of the standard procedures, writech and

writenum. Each procedure has a single value parameter

thus permitting the use of any identifier or literal

value to be used for the actual parameter.

To write a character, the procedure call,

writech(ch_sym), is made where ch_sym is any identifier

of type char or a character literal value. To write to

a new line on the output screen, two calls must be

made, one with a char(13) and the other with a

char(lO). This will result in printing a return and a

line feed on the output screen.

Writing an integer to the output screen is

performed using the procedure call, writenum(int_sym),

where int_sYm is any integer identifier or literal.

The integer is written at the current cursor position,

using only the number of characters required to

represent the integer value. Values are expected to be

in the range -32,768 through 32,767. Negative numbers

will be preceded by a minus sign. If a number does not

42

fit on the current line on the output screen it will

wrap around to the beginning of the next line, leaving

on the first line those characters that fit on that

line and printing the remaining characters at the

beginning of the next line.

43

CHAPTER 3 THE EDISON-ES COMPILER

The Edison-ES compiler which is described in this

paper is a one-pass compiler which emits assembly

language code for the INTEL 8086/88 based family of

microcomputers. The compiler creates an output

assembly code file, EOBJ1. The assembly code is then

assembled using any assembler for this microprocessor.

The resulting object code is linked using any MS DOS

linker to create an executable file. All test programs

are assembled using the TURBO ASSEMBLER and are linked

using the TLINK4 linker. The source code for the

compiler is available in Packard Laboratory Room 325 on

the campus of Lehigh University.

3.1 DESCRIPTION

The compiler is written in Pascal, using TURBO

PASCAL 4.0. It consists of a main program, EC.PAS

which uses four other TURBO PASCAL 4.0 units. In

addition to the DOS unit from TURBO PASCAL 4.0, EC.PAS

uses SYMBOLIO.PAS, WORD_TAB. PAS, and EMITCODE.PAS. Two

major benefits are derived from the use of units in

writing the Edison-ES compiler. First, it provides the

4. TURBO ASSEMBLER, TURBO PASCAL, and TLINK are
trademarks of BORLAND INTERNATIONAL.

44

means for modularization of this large program for

improved readability. Second, it provides a solution

to the size limit problem of the TURBO PASCAL editor.

The DOS unit is used for reading the command line

when the compiler is called. It retrieves the name of

the file to be compiled from the command line tail and

makes it available to the program.

The unit, SYMBOLIO.PAS, is used for opening and

closing files, reading from the Edison-ES source file,

and writing to the output files. Two output files are

created. First is the assembly code file, EOBJ1. The

other is ECODE, a file that lists the file read,

showing the entire file if compilation was completed.

If compilation was not completed because of an error,

ECODE contains only the portion of the file processed

before the error occurred as well as an error message.

The WORD TAB. PAS unit maintains the sYmbol table.

In this unit, the procedure nextsYrn(sYrn) uses

SYMBOLIO.PAS to provide the next character from the

input file. Strings of characters are processed and

are recognized as grammar tokens or identifiers.

Identifiers are placed in the sYmbol table, if they are

not already declared within the current block. The

sYmbol table is searched frequently in this unit. The

table search is necessary to determine if an identifier

45

already exists in the block, in the case of a name

declaration, or if the name exists locally or globally

when a name is used in a statement. The parser from

the main program calls a procedure CHECK in this unit

that verifies the next follow sYmbol. During the

semantic analysis, types are checked in this unit using

the procedure, CHECKTYPE. The beginning of each block

is initialized in this unit with the BEGINBLOCK

procedure. The termination of a block is accomplished

through the use an ENDBLOCK procedure. All error

messages are emitted through this unit. All stacks and

lookup tables are initialized in WORD TAB.PAS.

WORD TAB.PAS uses the EMITCODE.PAS and SYMBOLIO.PAS

units.

EMITCODE.PAS as the name implies, emits the

assembly code to the EOBJl file. A large majority of

the procedures in this unit are exported to the main

program. The sYmbol table record, wordattr, is

declared in this unit, but the table of records is

declared and completely maintained in the WORD TAB.PAS

unit. This is required because of the need to have

procedures in EMITCODE.PAS use values that are kept in

the sYmbol table and hence are passed records from the

table. EMITCODE.PAS uses the SYMBOLIO.PAS unit.

46

The main program, EC.PAS uses all of the units

mentioned. All of the constants, types, and variables,

used in EC.PAS are declared in the units. EC.PAS

contains the code for a recursive descent parser, a

semantic analyzer, and calls to EMITCODE.PAS for

emitting code.

3.2 CONSTRUCTION

The construction of the compiler was completed in

four phases. The parser was constructed initially and

then enhanced in the second phase to perform the scope

analysis. The third phase consisted of adding the code

to perform the semantic analysis. The addition of

procedures for generating the assembly code completed

the construction of the Edison-ES compiler.

3.21 THE PARSER

The parser is at the heart of the compiler. It is a

typical recursive descent parser for an LLl grammar,

with a procedure created for each nonterminal in the

grammar.

The construction of the compiler began with the

parser and the unit SYMBOLIO.PAS. This read strings

from input, identified the string as a grammar sYmbol

or an identifier before moving to the next input

string. If the expected grammar sYmbol was not found,

47

an error message, EXPECTED FOLLOW SYMBOL NOT FOUND was

emitted. Parsing continues until an error occurs or

the program to be parsed is accepted.

The parser was expanded through the inclusion of

WORD TAB.PAS to include scope analysis of the

identifiers. Each identifier was recorded in the

symbol table along with attributes that were determined

by the parser. Identifier types such as constant,

procedure, type, or variable were recorded with the

name of the identifier, the symbol number, and the

minimum block level.

Each identifier found by the parser, required

searching the symbol table. Every identifier found was

initially entered in the table with a sym_kind

attribute of undeclared. The undeclared sym_kind

attribute was used to determine if the record being

compared in the search was the current record or a

previously declared record for the same name. This

entry was updated to the correct sym_kind or deleted

once the table was searched. The entry was deleted

from the table if it previously existed at the same

level and the parser was not parsing a declaration. If

while parsing a declaration, the identifier was found

to already be declared in the current level, an error

resulted, with the appropriate error message.

48

References to an identifier made within the statement

part of a procedure resulted in searching the current

block for the name. If it was not in the table at the

current level, the table was searched from the current

block level down to level a or until the name was

found. If the name was only found with sym_kind of

undeclared, an error resulted with the appropriate

message.

Searching by block level was performed through the

use of stacks. Each time a new level was created, a

new stack was created for its identifiers. When a

block ended, its stack was removed. Thus the only

stacks in existence at any time during the parse were

the stacks for the current block and each of its

enclosing blocks. The existing stacks were maintained

through the use of an array of pointers. Each pointer

in the array points to the top of a stack. This array

has 8 entries, numbered 0 through 7, which correspond

to the block level for the stack pointed to by the

array entry. Thus at most 7 levels of nesting

procedures are available in Edison-ES. The entries in

the stacks are records with a pointer to the previous

entry in the stack and a pointer to the identifier's

record in the symbol table.

49

In the semantic analysis stage, each initial

reference to an identifier, required additional

information be added to the sYmbol table entry for the

identifier. This additional information included

identifier type such as procedure, value or variable

parameter, record field, structured or elementary type,

identifier length, and value if a constant. This was

used, at each future reference to the identifier, to

insure that expressions consisted of operands of the

same type and that they were assigned to variables of

the same type. Displacements of all variables from the

beginning of the block in which they were declared were

calculated and likewise recorded.

The final stage of construction was the generation

of the assembly code. The unit, EMITCODE.PAS, was

added with the sole purpose of writing the code

segments to EOBJI. Each segment of code to be emitted

was written into a procedure that was called from

EC.PAS. The code, data, and stack segments, along with

tables of labels are initialized in the INIT ASM

procedure. The jump to the final return address for

an exit to DOS and the input output procedures are in

the ENDCODE procedure.

50

3.22 THE SYMBOL TABLE

The symbol table is a large structure that retains all

needed information about each identifier found by the

parser. It is significantly different from the

structures used for holding information about

identifiers in the four pass version of the Edison

compiler.

In Hansen's four pass compiler, Pass 25 used an

array of integers that was mapped to an array of

characters. The position in the array of characters of

the last character in an identifier name was placed in

an array of integers. The position of insertion was

always the next identifier id number location. Thus if

the fifth identifier of a program had its characters

entered sequentially into the array of characters, and

the name occupied locations 15 through 18, the integer

array would have the number 18 placed in position 5.

In Hansen's Pass 3 6 , the identifier number is used

as an index into an array of records. The records

contain seven fields which correspond to the attributes

of the identifiers. Hansen used the array structure

because pointer data types were not available in

5. Per Brinch Hansen. pp. 306-306.
6. Per Brinch Hansen. pp. 324-325.

51

Edison. Every record had the same seven attributes,

some of which were retyped as needed. For some

identifiers, seven attributes were unnecessary, but

because of the absence of variant records, every record

needed the same number of fields.

The symbol table in Edison-ES begins as an array

of 0 through maxword of pointers. The current version

has maxword set to 750. Each pointer is either nil or

points to a linked list of one or more variant records.

Records are inserted into the table through the use of

a hash function applied to the identifier string. The

declaration of the record is

wordattr = record

alias, minlevl, val: integer;

sym_kind: namekind;

sorc_sym: nme;

typelen: integer;

case nametype: namekind of

recordtype: (fieldptr: wrdptr);

enumtype: (cptr: wrdptr);

arraytype: (upbnd, lowbnd: integer;

indxtype, entrytype: wrdptr);

settype: (typeelement: wrdptr);

constant: (constval: integer;

consttype: wrdptr);

52

field,

valparam,

varparam,

variable,

proctype: (displace: integer; nextone,

varkind: wrdptr);

end; (* wordattr *)

In this declaration, namekind is an enumerated type

declared as

namekind = (undeclared, incomplete, constant,

tipe, field, variable, split, partial,

complete, recordtype, arraytype,

elemtype, settype, enumtype, proctype,

valparam, varparam)

and

wrdptr = A wordattr.

The alias is the identifier number. Mlnlevl is the

minimum block level for which the identifiers are

declared. Sym_kind refers to the identifier's type.

Constants are obviously constant. Procedures are

split, complete, incomplete, or partial. All

parameters and variables are variable. Tipe is used

for type identifiers. The nametype is then used for

additional information about the identifier. The

actual string must be available for searching for

53

global identifiers. This is kept in sorc_sym. Typelen

is the length of the identifier in words. Nextone is a

pointer to the next record in the linked list pointed

to by the hash table pointer.

In the variant part of the wordattr record, the

fieldptr field for the recordtype variant is a pointer

to the first field of an identifier of type record.

This pointer points back into the symbol table to the

wordattr for the first field. This first field's

wordattr record has fields displace, nextone, and

varkind. The first of these refer to the field's

displacement in words from the beginning of the record

containing the field. The other two fields in the

field's wordattr record point to the field that follows

the current field and the field's type.

For the variables and parameters, displace,

nextone, varkind are used in a manner similar to the

use with the field. Displace is the number of words

from the beginning of the procedure, nextone points

back into the sYmbol table to the wordattr of the next

variable or parameter in the list, and varkind points

to the identifier's type.

The arraytyPe has fields for upper and lower

bounds for the indices, and two pointer fields that

point back into the symbol table. Indxtype points to

54

the record for the type of index used, while entrytype

points to the wordattr of the basetype of the array.

The remaining variants have fewer fields, but

their use of pointer fields are similar. Typeelement

points to the wordattr of the a set's basetype. The

variant enumtype has a field that points back into the

symbol table to the first constant name in the

enumeration list. Each constant has fields for a value

and a pointer to the next constant name in the

enumeration list.

Readability was the main reason for the use of the

variant record here. The arraytype needed the most

fields with four. Rather than have several fields with

zero or nil values, the decision was made to have

meaningful names for each namekind with only the number

of fields needed.

As mentioned previously (Section 3.21), an array

of pointers to the tops of currently active identifier

stacks was used to retain currently active

declarations. Each stack entry has a data field

consisting of a pointer into the symbol table. The

pointer points to the wordattr record for the declared

variable. This allows for rather fast searching of the

current block and enclosing blocks for an identifier

55

name by traversing the stacks and also rapid searching

by name using the hash table.

3 • 23 CODE GENERATION

The generation of the assembly code is performed

in the EMITCODE.PAS unit. Each block of code required

by a construct in Edison is emitted through a separate

procedure. Global constants are used for generating

the various labels required throughout the assembly

code program. The input and output procedures are

assembly procedures that follow the main procedure.

The main procedure contains all of the emitted code for

the Edison-ES program except the input and output

procedures which are called from the main procedure.

The length of each instruction in bytes is added

to a running total of bytes kept in the byte_cnt

variable. Two other global integer variables,

labl_cnt, inst_cnt, are updated throughout the code

generation process. Labl cnt is used to generate

labels within the code for loops and branching

instructions. It is updated each time its current

value is used in the generation of a loop or a branch

instruction. Inst cnt is used to generate labels for

procedure headings and jumps to the beginning of the

statement part of a procedure. The assembler treats

56

all forward jumps as 3 byte instructions, placing a no

opcode directive in the third byte if the jump is a

short jump.

Jumps to previously defined labels presented an

interesting problem. Jumps to known labels resulted in

the assembler emitting either two byte or three byte

instructions depending on the actual displacement of

the known label from the jump instruction. Since this

displacement varies from program to program, a lookup

table, clabl, is used to map the value of byte cnt to

each label emitted. When a jump instruction is

required that refers to a known label, the displacement

of the label from the byte_cnt at the jump instruction

is calculated. If the displacement is between -127 to

127, a two byte instruction results otherwise the

instruction requires three bytes. The appropriate

instruction length is then added the byte_cnt.

When a procedure heading is found in the parse, a

label, PLxx, is generated where xx is the current

inst cnt. Inst cnt is then incremented by 2 in

preparation for the next procedure heading. A jump

instruction to label, PLyy, is emitted after the

parameters have been initialized. The value of yy in

the label, PLyy, is the value, inst_cnt + 1. This

label is emitted at the beginning of the statement part

57

of the procedure. Hansen used variables, paramcount,

paramlength, and displacement to get to the beginning

of the statement part of each of his procedures. These

he calculated in his fourth pass 7 . The variable

inst cnt thus eliminates the need for these other

variables. A table, plabl, is used as a lookup table

for finding the label to which to jump when the

procedure is actually called.

When creating space for variable lists and

parameter lists, a PUSH AX instruction is emitted. The

number of pushes required is calculated from the number

of variable sYmbols of each type and the length of each

variable sYmbol. For instance if a procedure has 5

parameters of type integer and an array of 200

characters, 5 pushes would be required for the integer

parameters and 200 for the array. In each of these a

simple loop

INSTxx:

PUSH AX

LOOP INSTxx

would be used where the ex register was initialized to

5 for the integer parameters and 200 for the array. The

current value for labl cnt is used for the value xx.

7. Per Brinch Hansen. pp. 356-367.

58

Similarly, in the IF-ELSE and WHILE-ELSE

constructs, the labl cnt is used to generate labels for

the jump that is emitted at the ELSE clause. One label

is emitted for a jump to the end of the construct,

followed by the emitting of a label for the start of

the else clause. Labels are also emitted using

labl cnt when evaluating a bool expression, which

involves emitting a conditional jump and an

unconditional jump.

The initialization of the emitted program is

performed in the procedure, INIT_ASM. This procedure

initializes the global counters and emits the code

required by MS DOS for successful execution and

termination of the program. The CODE, DATA, and STACK

segments are also initialized with this code and the

correct return address placed on the stack. The return

instruction, used to return to DOS is emitted here

also. The address of this return instruction is placed

on the stack. This solved one of the largest problems

encountered in previous work with emitting assembly

code. Previously, the assembly code was scanned a

second time and the proper label for the return

instruction was issued on the second pass. This second

pass of the assembly code is no longer required. Since

each Edison-ES program is initialized in the same way,

59

the return instruction's displacement from the

beginning of the code segment is easily calculated.

Using the sum of the instruction lengths of all

instructions prior to the return instruction, the

address of the return is calculated and pushed onto the

stack. Thus it is available on the top of the stack at

the end of all the initialization and at the end of the

program. Popping of the stack into ex at the end of

the program is done with the return address being

assigned to ex. A JMP ex performs the jump back to the

address of the return instruction.

The procedure ENDeODE provides the code required

to end the main procedure of emitted code and the code

for the input, output, and HALT procedures. The

instruction to pop the address of the return to DOS

instruction into ex and the actual jump are issued here

along with ENDP directive. The standard procedures for

input, output, and HALT are written as procedures that

follow the main procedure and thus can be called from

the main procedure. All of these procedures utilize

the INT 21h interrupt for MS DOS function calls.

When an Edison-ES procedure is called, the emitted

code pushes the BP register, the current base pointer.

The BP register is then updated to the current value of

the stack pointer. This is followed by a pushing of

60

the base of the enclosing block, which is either the

current base or on the stack at the address, BP-2.

Then a push to leave space for the return address is

made. All parameter space requirements are then

handled by pushing onto the stack using a loop as

mentioned previously. The return address is at this

point the current value in byte_cnt. This is then

moved into the stack at BP-4. Finally the jump is made

to the label that was issued when the procedure heading

was parsed.

In the procedure, the parameters are initialized

with either the values or addresses as needed. Space

is allocated for the local variables using the

previously described loop. All variables are

initialized to zero when initially created. A jump is

then made to the label that was emitted at the

beginning of parsing the statement part of the

procedure.

Local variables and value parameters are accessed

by their displacement within the current environment

block whose base address is in the BP register.

Variables which are global to a procedure are accessed

through calculation of their address in the enclosing

block. A loop which moves to the base of the enclosing

block where the global variable was declared is emitted

61

in this case. The displacement within the defining

block is then used to calculate the variable's address

within the block. This address is then pushed onto the

stack.

Variable parameters present several different

situations. The stack location for a variable

parameter contains the address of the corresponding

actual parameter. If the actual parameter was a

variable or value parameter in an enclosing block, the

address is calculated in a manner similar to that for

global variables. The variable parameters which

correspond to actual parameters that are themselves

variable parameters simply have the address from the

actual parameter's stack entry copied onto the stack.

In evaluating bool expressions, all booleans are

compared with the constant value 4, which is the

constant used by the compiler for the identifier,

FALSE. Values which are not equal to FALSE are true.

No checking is performed at runtime to insure that

value on the top of the stack are in fact the values

for FALSE or TRUE, which are 4 and 5 respectively.

Thus TRUE is determined as not FALSE.

The remaining emitted code is generated in a

fairly standard manner. Set operations are performed

using masks with the shift and logical instructions.

62

Arithmetic operations are performed using the stack to

hold the operands and perform the appropriate

operation. If several registers were available for an

instruction sequence, choices were usually made so as

to optimize the time for the instruction sequence.

This is the only optimization performed on the

generated code.

3.24 ERROR HANDLING

No attempt at error recovery is made in the

compiler. Upon discovery of a compilation error, an

error message is printed to the screen with the line

number of the line where the error was encountered. A

similar message is entered in the ECODE file which is a

text file containing the source code that compiled

prior to the occurrence of the error. The compiler

halts upon discovery of an error.

3.25 LIMITATIONS

The known limitations of the Edison-ES compiler

have for the most part been previously mentioned where

appropriate. Below is a summary of those which were

mentioned and others which were not.

1. The stack and code segments each have a 64K

size limit. No segment swapping is supported. The

63

data segment and stack segment are initialized to the

same segment address. The bottom of the stack segment

is used for the data declarations used by the input and

output procedures. This requires approximately the

first 25 bytes of the stack segment, the stack is

slightly less than 64K in size.

2. No runtime checking for values in specific

ranges is performed. Thus as mentioned, values which

are not false are defaulted to true. TRUE is

represented by the integer 5 and FALSE by 4. Sets may

contain only values in the range 0 through SETLIMIT,

which is set at 127. Hence a set of integer may only

contain integers in that range. Unpredictable results

can occur if values are used outside this range. Range

checking is performed however on the indices of an

array.

3. Nesting of procedures is supported only up to 7

levels. Beyond that, the range checking in TURBO

PASCAL will cause the program to terminate with a

runtime error. This occurs because of an out of range

error in the array of stack pointers to the stacks for

each level's variables.

4. A maximum of 10 characters are used for

uniquely identifying an identifier name. Longer names

64

are truncated on input, but do not cause a problem for

the compiler.

5. The maximum of 750 identifier names are

permitted. This limit is due to the size of the lookup

table that keeps the label numbers for the procedures.

3.3 USING THE COMPILER

The compiler is used by issuing a command of the

form

EC filename

at the MS DOS prompt. The filename argument is

expected to be the complete path and file name for the

file to be compiled. Upon successful compilation, the

compiler will create a file, EOBJl, on the default disk

drive. This file contains the assembly code emitted by

the compiler. A second file, ECODE, is also emitted to

the default drive. This is a text file containing a

copy of the source program just compiled. If errors

occurred, ECODE will contain the source code up to the

point the error occurred and a copy of the same error

message that was displayed on the screen. EOBJI will

contain the code generated up to the error.

Once successful compilation of a program has

occurred, the EOBJI file is assembled using an

assembler for the INTEL 8086/88 microprocessor

65

instruction set. The resulting object code file is

then linked using any ME DOS linker to obtain an

executable MS DOS file with an EXE extension. This

executable file may now be used from the DOS system

prompt. All assembly and linking for the programs

tested with the Edison-ES compiler were performed using

the TURBO ASSEMBLER from Borland International.

Assembly was performed using the TURBASM software and

linking performed using the accompanying TLINK

software. Other assemblers and linkers were tested,

but the software from BORLAND performed much faster

than the others.

3.4 ADDITIONAL WORK

The work on this paper has resulted in a compiler

which compiles executable programs for the extended

subset of EDISON. As mentioned, problems were solved

that were encountered previously while attempting to

emit assembly code. Other work on the compiler could

be performed, resulting in a compiler for the Edison

language itself. First, the module construct must be

implemented. Concurrency is a major issue which needs

to be addressed. The issues of procedure parameters,

library procedures and code optimization could also be

addressed. These issues all provide additional

66

projects to be completed before the Edison system can

be fully implemented on the MS DOS microcomputers.

67

BIBLIOGRAPHY

Barrett, W., Bates, R., Gustafson, D., Couch, J.
Compiler Construction. 2nd Ed. Chicago: SRA,
Inc., 1979.

Fischer, C.N. and LeBlanc, R.J., Crafting A Compiler.
Menlo Park, CA: Benjamin Cummings Pub. Co.
Inc., 1988.

Hansen, Per Brinch. Programming a Personal Computer.
Englewood Cliffs NJ: Prentice Hall, Inc, 1982 .

. iAPX86/88, 186/188 User's Manual, Programmer's---- Reference. Santa Clara CA: INTEL Corp., 1986.

Lemone, Karen A., Assembly Language and Systems
Programming for the IBM PC and Compatibles.
Glenview, IL: Scott Foresman and Co., 1985.

Sethi, Ravi, Programming Languages: Concepts and
Constructs. Reading MA: Addison Wesley, 1989.

Swan, Thomas, Mastering Turbo Pascal 4.0 . 2nd ed.,
Indianapolis IN: Hayden Books, 1988.

68

APPENDIX
A.l THE EDISON-ES GRAMMAR

A. 11 TERMINAL SYMBOLS
andl, arrayl, becomesl, beginl, charI, colon, coma,
constl, divl, dol, dot, eIsel, endl, enuml, eq, gcl,
ge, gt, idc, idf, idp, idt, idv, if I, inl, lambda,
lbrac, Ie, lparen, It, minus, modI, modulel, ne, notl,
numerall, orl, plus, postl, prel, procl, quotel, rbrac,
rdchl, rdnuml, recordl, rparen, semi, setl, skipl,
star, vall, varl, whilel, writchl, writnuml

A.12 NONTERMINAL SYMBOLS
A, AD, AE, AEX, AFU, AL, ALX, AO, ASE, ASEX, AT, ATU,
ATX, C, CD, CDL, CDLX, CHS, CP, CPX, CS, CSL, CSLX, CX,
D, E, ED, EL, ELX, ESL, ESLX, EX, EXO, F, FG, FGX, FL,
FLX, FU, FX, KS, MD, MDX, MO, NL, NLX, P, PC, PCX, PO,
POL, PDLX, PG, PH, PHX, PL, PLX, PTX, PX, RO, RO, RS,
S, SD, SE, SEP, SEX, SL, SLX, SP, T, TO, TX, VD, VDX,
VG, VGX, VL, VLX, VS, VSN, VSX

A.13 PRODUCTIONS
A ---> AE
AD ---> arrayl idt lbrac RS rbrac lparen idt rparen
AE ---> ASE AEX
AEX ---> RO ASE
AEX ---> lambda
AFU ---> lparen AE rparen
AL ---> A ALX
ALX ---> coma A ALX
ALX ---> lambda
AO ---> minus
AO ---> orl
AO ---> plus
ASE ---> SEP AT ASEX
ASEX ---> AO AT ASEX
ASEX ---> lambda
AT ---> FU FX
AT ---> MO ATX
AT ---> AFU FX
AT ---> notl ATU
ATU ---> FU
ATU ---> AFU
ATX ---> AFU TX
ATX ---> FU TX
C ---> idt CX
CD ---> idc eq KS
CDL ---> constl CD CDLX

69

CDLX ---> lambda
CDLX ---> semi CD CDLX
CHS ---> charI lparen numerall rparen
CHS ---> quotel gel quotel
CP ---> PH CPX PDLX SP
CPX ---> D CPX
CPX ---> lambda
CS ---> E dol SL
CSL ---> CS CSLX
CSLX ---> elsel CS CSLX
CSLX ---> lambda
CX ---> lambda
CX ---> lparen EL rparen
D ---> CDL
D ---> TD
D ---> VD
E ---> SE EX
ED ---> enuml idt lparen ESL rparen
EL ---> E ELX
ELX ---> coma E ELX
ELX ---> lambda
ESL ---> ide ESLX
ESLX ---> coma ide ESLX
ESLX ---> lambda
EX ---> lambda
EX ---> RO SE
EXD ---> star D
F ---> FU FX
F ---> PC FX
F ---> lparen E rparen
F ---> notl F
FU ---> C
FU ---> KS
FU ---> VS
FG ---> idf FGX colon idt
FGX ---> coma idf FGX
FGX ---> lambda
FL ---> FG FLX
FLX ---> lambda
FLX ---> semi FG FLX
FX ---> colon idt FX
FX ---> lambda
KS ---> CHS
KS ---> ide
KS ---> numerall
MD ---> modulel MDX SP
MDX ---> D MDX
MDX ---> EXD MDX
MDX ---> lambda
MO ---> andl

70

MO ---> divl
MO ---> modI
MO ---> star
NL ---> idc NLX
NL ---> idf NLX
NL ---> idv NLX
NLX ---> coma NL
NLX ---> lambda
P ---> PX CP
PC ---> idp PCX
PCX ---> lambda
PCX ---> Iparen AL rparen
PO ---> CP
PO ---> postl CP
PO ---> prel PH
POL ---> PO
POL ---> MD
POLX ---> POL
POLX ---> lambda
PG ---> varl VG
PG ---> VG
PH ---> procl idp PHX PTX
PHX ---> lambda
PHX ---> Iparen PL rparen
PL ---> PG PLX
PLX ---> lambda
PLX ---> semi PG PLX
PTX ---> colon idt
PTX ---> lambda
PX ---> COL PX
PX ---> lambda
PX ---> TO PX
RD ---> recordl idt Iparen FL rparen
RO ---> eq
RO ---> ge
RO ---> gt
RO ---> inl
RO ---> le
RO ---> It
RO ---> ne
RS ---> KS colon KS
S ---> if1 CSL endl
S ---> PC
S ---> rdchl Iparen VL rparen
S ---> rdnuml Iparen VL rparen
S ---> skipl
S ---> VS becomesl E
S ---> whilel CSL endl
S ---> writchl Iparen NL rparen
S ---> writnuml Iparen NL rparen

71

SD ---> setl idt lparen idt rparen
SE ---> SEP T SEX
SEP ---> lambda
SEP ---> minus
SEP ---> plus
SEX ---> AO T SEX
SEX ---> lambda
SL ---> S SLX
SLX ---> lambda
SLX ---> semi S SLX
SP ---> beginl SL endl
T ---> F TX
TD ---> AD
TD ---> ED
TD ---> RD
TD ---> SD
TX ---> lambda
TX ---> MO F TX
VD ---> varl VG VDX
VDX ---> lambda
VDX ---> semi VG VDX
VG ---> idv VGX colon idt
VGX ---> coma idv VGX
VGX ---> lambda
VL ---> idv VLX
VLX ---> coma idv VLX
VLX ---> lambda
VS ---> VSN VSX
VSN ---> idv
VSN ---> vall idp
VSX ---> lbrac E rbrac VSX
VSX ---> dot idf VSX
VSX ---> colon idt VSX
VSX ---> lambda

A. 14 THE NULL NONTERMINALS

AEX
FLX
SEX

ALX
FX
SLX

ASEX CDLX CPX
MDX NLX PCX
TX VDX VGX

CSLX CX
PDLX PHX
VLX VSX

ELX
PLX

ESLX EX
PTX PX

FGX
SEP

A.IS THE FIRST SETS

A = { andl, charl, divl, idc, idt, idv, lparen, minus,
modl, notl, numerall, plus, quotel, star, vall}

AD = { arrayl}
AE = { andl, charl, divl, idc, idt, idv, lparen, minus,

modl, notl, numerall, plus, quotel, star, vall}
AEX = { eq, ge, gt, inl, lambda, le, It, ne}
AFU = { lparen}

72

AL = { andl, charI, divl, idc, idt, idv, Iparen, minus,
modI, notl, numerall, plus, quotel, star, vall}

ALX = { coma, lambda}
AD = { minus, orl, plus}
ASE = { andl, charI, divl, idc, idt, idv, Iparen,

minus, modI, notl, numerall, plus, quotel,
star, vall}

ASEX = { lambda, minus, orl, plus}
AT = { andl, charI, divl, idc, idt, idv, Iparen, modI,

notl, numerall, quotel, star, vall}
ATU = { charI, idc, idt, idv, Iparen, numerall, quotel,

vall}
ATX {charI, idc, idt, idv, Iparen, numerall, quotel,

vall}
C = { idt}
CD = { idc}
CDL = { constl}
CDLX = { lambda, semi}
CHS = { charI, quotel}
CP = { procl}
CPX = { arrayl, constl, enuml, lambda, recordl, setl,

varl}
CS = { charI, idc, idp, idt, idv, Iparen, minus, notl,

numerall, plus, quotel, vall}
CSL = { charI, idc, idp, idt, idv, Iparen, minus, notl,

numerall, plus, quotel, vall}
CSLX = { eIsel, lambda}
CX = { lambda, Iparen}
D = { arrayl, constl, enuml, recordl, setl, varl}
E = { charI, idc, idp, idt, idv, Iparen, minus, notl,

numerall, plus, quotel, vall}
ED {enuml}
EL = { charI, idc, idp, idt, idv, Iparen, minus, notl,

numerall, plus, quotel, vall}
ELX = { coma, lambda}
ESL = { idc}
ESLX = { coma, lambda}
EX = { eq, ge, gt, inl, lambda, Ie, It, ne}
EXD = { star}
F = { charI, idc, idp, idt, idv, Iparen, notl,

numerall, quotel, vall}
FG = { idf}
FGX = { coma, lambda}
FL = { idf}
FLX = { lambda, semi}
FU {charI, idc, idt, idv, numerall, quotel, vall}
FX = { colon, lambda}
KS = { charI, idc, numerall, quotel}
MD = { modulel}

73

MDX = { arrayl, constl, enuml, lambda, recordl, setl,
star, varl}

MO = { andl, divl, modI, star}
NL = { idc, idf, idv}
NLX = { coma, lambda}
P = { arrayl, constl, enuml, procl, recordl, setl}
PC = { idp}
PCX = { lambda, Iparen}
PD = { post!, pre!, proc!}
PDL = { module!, post!, pre!, proc!}
PDLX = { lambda, module!, post!, prel, proc!}
PG = { idv, var!}
PH = { proc!}
PHX = { lambda, Iparen}
PL = { idv, var!}
PLX = { lambda, semi}
PTX = { colon, lambda}
PX = { array!, const!, enum!, lambda, record!, set!}
RD = { record!}
RO = { eq, ge, gt, in!, Ie, It, ne}
RS = { char!, idc, numeral!, quote!}
S = { idp, idv, if!, rdch!, rdnum!, skip!, val!,

while!, writch!, writnum!}
SD = { set!}
SE = { char!, idc, idp, idt, idv, Iparen, minus, not!,

numeral!, plus, quote!, val!}
SEP = { lambda, minus, plus}
SEX = { lambda, minus, or!, plus}
SL = { idp, idv, if!, rdch!, rdnum!, skip!, val!,

while!, writch!, writnum!}
SLX = { lambda, semi}
SP = { begin!}
T = { char!, idc, idp, idt, idv, Iparen, not!,

numeral!, quote!, val!}
TD {array!, enum!, record!, set!}
TX = { and!, div!, lambda, mod!, star}
VD = { var!}
VDX = { lambda, semi}
VG = { idv}
VGX = { coma, lambda}
VL = { idv}
VLX = { coma, lambda}
VS = { idv, val!}
VSN = { idv, val!}
VSX = { colon, dot, lambda, Ibrac}

A.!6 THE FOLLOW SETS

A = { coma, rparen}

74

AD = { arrayl, beginl, constl, enuml, module!, postl,
prel, procl, recordl, setl, star, varl}

AE = { coma, rparen}
AEX {coma, rparen}
AFU = { andl, colon, coma, divl, eq, ge, gt inl, Ie,

It, minus, modl, ne, orlplus, rparen, star}
AL = { rparen}
ALX = { rparen}
AD = { andl, charl, divl, ide, idp, idt, idvl, paren,

modl, notl, numerall, quotel, star, vall}
ASE = { coma, eq, ge, gt, inl, Ie, It, ne, rparen}
ASEX = { coma, eq, ge, gt, in!, Ie, It, net rparen}
AT = { coma, eq, ge, gt, inl, Ie, It, minus, ne, orl,

plus, rparen}
ATU {coma, eq, ge, gt, inl, Ie, It, minus, ne, orl,

plus, rparen}
ATX = { coma, eq, ge, gt, inl, Ie, It, minus, ne, orl,

plus, rparen}
C = { andl, colon, coma, divl, dol, eIsel, endl, eq,

ge, gt, inl, Ie, It, minus, modl, ne, orl,
plus, rbrac, rparen, semi, star}

CD = { arrayl, beginl, constl, enuml, modulel, postl,
prel, procl, recordl, semi, setl, star, varl}

CDL = { arrayl, beginl, constl, enuml, modulel, postl,
prel, procl, recordl, setl, star, varl}

CDLX = { arrayl, beginl, constl, enuml, modulel, postl,
prel, procl, recordl, setl, star, varl}

CHS = { andl, arrayl, beginl, colon, coma, constl,
divl, dol, eIsel, endl, enuml, eq, ge, gt inl,
Ie, It, minus, modl, modulel, ne orl, plus,
postl, prel, procl, rbrac, recordl rparen,
semi, setl, star, varl}

CP = { beginl, lambda}
CPX = { beginl, modulel, postl, prel, procl}
CS = { eIsel, endl}
CSL = { endl}
CSLX = { endl}
CX = { andl, colon, coma, divl, dol, eIsel, endl, eq,

ge, gt, inl, Ie, It, minus, modl, ne, orl,
plus, rbrac, rparen, semi, star}

D = { arrayl, beginl, constl, enuml, modulel, postl,
prel, procl, recordl, setl, star, varl}

E = { coma, dol, eIsel, endl, rbrac, rparen, semi}
ED = { arrayl, beginl, constl, enuml, modulel, postl,

prel, procl, recordl, setl, star, varl}
EL = { rparen}
ELX = { rparen}
ESL = { rparen}
ESLX {rparen}
EX = { coma, dol, eIsel, endl, rbrac, rparen, semi}

75

EXD = { arrayl, beginl, constl, enuml, recordl, setl,
star, varl}

F = { andl, coma, divl, dol, eIsel, endl, eq, ge, gt,
inl, Ie, It, minus, modlne, orl, plus, rbrac,
rparen, semi, star}

FG = { rparen, semi}
FGX = { colon}
FL = { rparen}
FLX = { rparen}
FU = { andl, colon, coma, divl, dol, eIsel, endl, eq,

ge, gt, inl, Ie, It, minus, modI, ne, orl,
plus, rbrac, rparen, semi, star}

FX {andl, coma, divl, dol, eIsel, endl, eq, ge, gt,
inl, Ie, It, minus, modI, ne, orl, plus, rbrac,
rparen, semi, star}

KS = { andl, arrayl, beginl, colon, coma, constl, divl,
dol, eIsel, endl, enuml, eq, ge, gt inl, Ie,
It, minus, modI, modulel, ne orl, plus, postl,
prel, procl, rbrac, recordl rparen, semi, setl,
star, varl}

MD = { beginl}
MDX = { beginl}
MO = { charI, ide, idp, idt, idv, Iparen, notl,

numerall, quotel, vall}
NL = { rparen}
NLX = { rparen}
P = { lambda}
PC = { andl, colon, coma, divl, dol, eIsel, endl, eq,

ge, gt, inl, Ie, It, minus, modI, ne, orl,
plus, rbrac, rparen, semi, star}

PCX {andl, colon, coma, divl, dol, eIsel, endl, eq,
ge, gt, inl, Ie, It, minus, modI, ne, orl,
plus, rbrac, rparen, semi, star}

PD = { beginl}
PDL = { beginl}
PDLX = { beginl}
PG = { rparen, semi}
PH = { arrayl, beginl, constl, enuml, modulel, postl,

prel, procl, recordl, setl, varl}
PHX = { arrayl, beginl, colon, constl, enuml, modulel,

postl, prel, procl, recordl, setl, varl}
PL = { rparen}
PLX = { rparen}
PTX = { arrayl, beginl, constl, enuml, modulel, postl,

prel, procl, recordl, setl, varl}
PX = { procl}
RD = { arrayl, beginl, constl, enuml, modulel, postl,

prel, procl, recordl, setl, star, varl}

76

RO = { and1, char1, div1, ide, idp, idt, idvl, paren,
minus, mod1, not1, numera11, plus, quote1,
star, vall}

RS = { rbrac}
S = { eIsel, end1, semi}
SD = { array1, begin1, const1, enum1, module1, post1,

pre1, proc1, record1, set1, star, var1}
SE {coma, dol, eIsel, end1, eq, ge, gt in1, Ie, It,

ne, rbrac, rparen, semi}
SEP = { and1, char1, div1, ide, idp, idt, idvl, paren,

mod1, not1, numeral1, quote1, star, vall}
SEX = { coma, dol, eIsel, end1, eq, ge, gt, in1, Ie,

It, ne, rbrac, rparen, semi}
SL = { eIsel, end1}
SLX = { eIsel, end1}
SP = { begin1, lambda}
T = { coma, dol, eIsel, end1, eq, ge, gt, in1, Ie, It,

minus, ne, or1, plus, rbrac, rparen, semi}
TD = { array1, begin1, const1, enum1, module1, post1,

pre1, proc1, record1, set1, star, var1}
TX = { coma, dol, eIsel, end1, eq, ge, gt, in1, Ie, It,

minus, ne, or1, plus, rbrac, rparen, semi}
VD {array1, begin1, const1, enum1, module1, post1,

pre1, proc1, record1, set1, star, var1}
VDX = { array1, begin1, const1, enum1, module1, post1,

pre1, proc1, record1, set1, star, var1}
VG = { array1, begin1, const1, enum1, module1, post1,

pre1, proc1, record1, rparen, semi, set1, star,
var1}

VGX = { colon}
VL = { rparen}
VLX = { rparen}
VS = { and1, becomes1, colon, coma, div1, dol, eIsel,

end1, eq, ge, gt, in1, Ie, It, minus, mod1, ne,
or1, plus, rbrac, rparen, semi, star}

VSN = { and1, becomes1, colon, coma, div1, dol, dot,
eIsel, end1, eq, ge, gt, in1, Ibrac, Ie, It,
minus, mod1, ne, or1, plus, rbrac, rparen,
semi, star}

VSX = { and1, becomes1, colon, coma, div1, dol, eIsel,
end1, eq, ge, gt, in1, Ie, It, minus, mod1, ne,
or1, plus, rbrac, rparen, semi, star}

77

VITA

The author, John E. Davis, was born on August 15,

1945 in Bethlehem, PA. He is the oldest of the 2

children of May F. (Rothrock) Davis and Frederick P.

Davis. His mother and younger brother, Frederick,

still reside in Bethlehem.

John was graduated from Liberty High School in

1963 and went on to attend what is now Kutztown State

University. Majoring in mathematics and minoring in

physics, John graduated with honors in 1967. He

received the Kappa Mu Epsilon Mathematics Award at

upon graduation from Kutztown. John went on as a

teaching assistant to study full-time at the University

of Delaware in Newark, DE. He received the Master of

Science Degree in Mathematics in 1970. His thesis was

A Uniqueness Theorem for the Generalized Axially

symmetric HeLmholtz Equation and was under the

supervision of Professor Richard Weinacht. Between

1980 and 1984, John attended Kutztown State University,

Muhlenberg College, and Northampton Community College

taking courses in computing science.

In 1968 John accepted a position as a high school

mathematics teacher and Chairman of Department of

Mathematics in the Southern Lehigh School District,

78

Center Valley, PA. He held this position until

September 1983 when he accepted a position as Academic

Computing Coordinator and Assistant Professor of Data

Processing at Northampton Community College. He was

promoted to Associate Professor of Computer Information

Science at Northampton Community College in 1988. In

Spring 1990 he resigned his position as Academic

Computing Coordinator to devote more time to teaching.

Since 1985 he has been an adjunct professor of Computer

Information Science at Muhlenberg College in Allentown.

John is married to the former Sally A. Whitehead

of Allentown. They reside in Allentown with their 3

children, John, Megan, and Bryan.

79

	Lehigh University
	Lehigh Preserve
	1991

	The Edison-ES programming language
	John E. Davis
	Recommended Citation

	00185
	00186
	00188
	00189
	00190
	00191
	00192
	00193
	00194
	00195
	00196
	00197
	00198
	00199
	00200
	00201
	00202
	00203
	00204
	00205
	00206
	00207
	00208
	00209
	00210
	00211
	00212
	00213
	00214
	00215
	00216
	00217
	00218
	00219
	00220
	00221
	00222
	00223
	00224
	00225
	00226
	00227
	00228
	00229
	00230
	00231
	00232
	00233
	00234
	00235
	00236
	00237
	00238
	00239
	00240
	00241
	00242
	00243
	00244
	00245
	00246
	00247
	00248
	00249
	00250
	00251
	00252
	00253
	00254
	00255
	00256
	00257
	00258
	00259
	00260
	00261
	00262
	00263
	00264
	00265
	00266
	00267
	00268
	00269
	00270

